About

LATEST NEWS:

ESA’s exoplanet mission Ariel, scheduled for launch in 2029, has moved from study to implementation phase!

Ariel press release here
ESA announcement here

Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was selected as the fourth medium-class mission in ESA’s Cosmic Vision programme. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System.

The Ariel mission page on ESA’s website can be accessed here.

See Ariel videos in different languages – try clicking a flag!

Austria
France
Netherlands
Spain
Czech Republic
Italy
Poland
United States
Estonia
Japan
Portugal

Publications

ARIEL DEFINITION STUDY REPORT:
November 2020
ARIEL ASSESSMENT STUDY REPORT:
March 2017
ARIEL YELLOW BOOK TECHNICAL NOTES:
Link to all Technical Notes
ARIEL SCIENTIFIC PROPOSAL & OUTCOME OF ESA CDF STUDY:
Link to ESA website

Ariel Special Issue in Experimental Astronomy: coming soon!

Barnes, J.R. et al. Exoplanet mass estimation for a sample of targets for the Ariel mission;

Barstow, J. et al. A retrieval challenge exercise for the Ariel mission;

Brucalassi, A. et al. Determination of stellar parameters for Ariel targets: a comparison analysis between different spectroscopic methods;

Caines, H. et al. Simulation of Ephemeris Maintenance of Transiting Exoplanets’

Changeat et al. Disentangling Atmospheric Compositions of K2-18 b with Next Generation Facilities;

Charnay, B. et al. A survey of exoplanet phase curves with Ariel;

Chioetto, P . et al. Qualification of the thermal stabilization, polishing and coating procedures for the aluminum telescope mirrors of the Ariel mission;

Danielski, C. et al. The homogeneous characterisation of Ariel host stars;

Demangeon, O. et al. Need, Scale and Feasibility of an Ariel radial velocity campaign;

Encrenaz, T. et al. Observability of temperate exoplanets with Ariel;

Ferus M. et al. Ariel – a window to the origin of life on early Earth?

Focardi, M. et al. The Ariel Instrument Control Unit its role within the Payload and B1 Phase design;

Garai, Z. et al. Grazing, non-transiting disintegrating exoplanets observed with the planned Ariel space observatory A case study using Kepler-1520b;

Garcia Perez, A. et al. Thermoelastic evaluation of the Payload Module of the Ariel mission;
Guilluy, G. et al. On The Synergy Between Ariel and Ground-Based High-Resolution Spectroscopy; 

Haswell, C. A. Extended Use of the Ariel Core Survey Data;

Helled, R. et al. Ariel Planetary Interiors White Paper; Ito, Y. et al. Detectability of mineral atmospheres with Ariel;

Kiss, C. et al. Ancillary science with Ariel: Feasibility and scientific potential of young star observations; 

Kokori A. et al. ExoClock Project: An open platform for monitoring the ephemerides of Ariel targets with contributions from the public;

Morales, J.C. et al. Ariel scheduling using Artificial Intelligence;

Morello, G. et al. The Ariel 0.6 – 7.8 μm stellar limb- darkening coefficients;

Morgante, G. et al. The thermal architecture of the ESA Ariel payload at the end of Phase B1;

Moses, J.I. et al. Chemical variation with altitude and longitude on exo-Neptunes: Predictions for Ariel phase- curve observations;

Pearson C. et al. The Ariel Ground Segment and Instrument Operations Science Data Centre;

Seli, B. et al. Stellar flares with Ariel;

Szabó, G. et al. High-precision photometry with Ariel; 

Turrini, D. et al. Exploring the link between star and planetary formation with Ariel;

Wolkenberg, P. et al. Effect of clouds on emission spectra for Super Venus within Ariel;

Peer reviewed publications about Ariel

Mugnai, L. V.; Pascale, E.; Edwards, B.; Papageorgiou, A.; Sarkar, S. (2020); ArielRad: the Ariel radiometric model; Experimental Astronomy, Volume 50, Issue 2-3, p.303-328

Sarkar S., E. Pascale, A. Papageorgiou, L. Johnson, I. Waldmann, ExoSim: the Exoplanet Observation Simulator, Experimental Astronomy, 2020, arXiv:2002.03739.

Nikolaou N. et al. Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots , AJ, 2020. 

Bourgalais, J., Carrasco, N., Changeat, Q., Venot, O., Jovanović, L., Pernot, P., Tennyson, J., Chubb, Katy L., Yurchenko, Sergey N., & Tinetti, G. (2020), Ions in the Thermosphere of Exoplanets: Observable Constraints Revealed by Innovative Laboratory Experiments. The Astrophysical Journal, Volume 895, Issue 2, id.77.

Pluriel, W.; et al. (2020), ARES. III. Unveiling the Two Faces of KELT-7 b with HST WFC3 ,  The Astronomical Journal, 160, 112

Skaf N. et al., (2020) ARES II: Characterising the Hot Jupiters WASP-127 b, WASP-79 b and WASP-62 b with HST, AJ, 160, 109.

Edwards B. N. et al. (2020), ARES I: WASP-76 b, A Tale of Two HST Spectra, Accepted for publication in AJ, arXiv:2005.02374.

Min, M.; Ormel, C. W.; Chubb, K.; Helling, C.; Kawashima, Y. (2020); The ARCiS framework for exoplanet atmospheres. Modelling philosophy and retrieval; Astronomy & Astrophysics, Volume 642, id.A28, 35.

D. Turrini, A. Zinzi and J. A. Belinchon (2020) Normalized angular momentum deficit: A tool for comparing the violence of the dynamical histories of planetary systems, A&A, 636, A53.

Changeat, Q., Edwards, B., Al-Refaie, A., F., Tsiaras, A., Waldmann, I. P., Tinetti, G., Disentangling Atmospheric Compositions of K2-18 b with Next Generation Facilities. Submitted ApJ, arXiv:2003.01486.

Petralia, A., Micela, G., (2020) Principal Component Analysis to correct data systematics. Case study: K2 light curves, Experimental Astronomy, 49, 97.

Barstow J. K., Q. Changeat, R. Garland, M. R Line, M. Rocchetto, I. P Waldmann (2020), A comparison of exoplanet spectroscopic retrieval tools, Monthly Notices of the Royal Astronomical Society, Volume 493, Issue 4, p.4884-4909.

Changeat Q., Al-Refaie A., Mugnai L.V., Edwards B., Waldmann I. P., Pascale E., Tinetti G. (2020), Alfnoor: A Retrieval Simulation of the Ariel Target List, The Astronomical Journal, 160, 80, 2020.

Changeat Q., Keyte L., Waldmann I. P., Tinetti G. (2020), Impact of planetary mass uncertainties on exoplanet atmospheric retrievals, The Astrophysical Journal, 896, 107, 2020.

Changeat Q., B. Edwards, I. P. Waldmann, and G. Tinetti, Toward a More Complex Description of Chemical Profiles in Exoplanet Retrievals: A Two-layer Parameterization, The Astrophysical Journal, 886 39, 2019.

Edwards, B. N.; L. Mugnai, G. Tinetti, E. Pascale, and S. Sarkar (2019) An Updated Study of Potential Targets for Ariel, AJ, 157 242.

Middleton K. F. et al., An integrated payload design for the atmospheric remote-sensing infrared exoplanet large-survey (ARIEL): results from phase A and forward look to phase B1, 2019, Proceedings of the SPIE, Volume 11180, id. 1118036, 7 pp.

Sarkar, S. et al., Stellar pulsation and granulation as noise sources in exoplanet transit spectroscopy in the ARIEL space mission, Monthly Notices of the Royal Astronomical Society, 481, 3, p. 2871-2877, 2018.

Tinetti, G., Drossart, P., Eccleston, P. et al., A chemical survey of exoplanets with ARIEL, Exp Astron (2018) 46: 135. https://doi.org/10.1007/s10686-018-9598-x

Venot, O., Drummond, B., Miguel, Y. et al., A better characterization of the chemical composition of exoplanets atmospheres with ARIEL, Exp Astron (2018) 46: 101. https://doi.org/10.1007/s10686-018-9597-y

Zingales, T., Tinetti, G., Pillitteri, I. et al., The ARIEL mission reference sample, Exp Astron (2018) 46: 67. https://doi.org/10.1007/s10686-018-9572-7

Turrini, D., Miguel, Y., Zingales, T. et al., The contribution of the ARIEL space mission to the study of planetary formation, Exp Astron (2018) 46: 45. https://doi.org/10.1007/s10686-017-9570-1

Encrenaz, T., Tinetti, G. & Coustenis, A., Transit spectroscopy of temperate Jupiters with ARIEL: a feasibility study, Exp Astron (2018) 46:31.https://doi.org/10.1007/s10686-017-9561-2

Puig, L., Pilbratt, G., Heske, A. et al., The Phase A study of the ESA M4 mission candidate ARIEL, Exp Astron (2018) 46: 211. https://doi.org/10.1007/s10686-018-9604-3

Focardi, M., Pace, E., Farina, M. et al., The ARIEL Instrument Control Unit design, Exp Astron (2018) 46: 1. https://doi.org/10.1007/s10686-017-9560-3

more publications

Press Releases

Credit: ESA/STFC RAL Space/UCL/UK Space Agency/ ATG Medialab

Ariel Press Release (11/2020) – The European Space Agency formally adopts Ariel, the exoplanet explorer

The European Space Agency (ESA) have formally adopted Ariel, the first mission dedicated to study the nature, formation and evolution of exoplanets.

– Ariel has passed major feasibility reviews and has been formally adopted into the program of future missions for implementation.
– It will survey about 1000 planets outside our solar system during its lifetime.
– Ariel will unveil the nature, formation and evolution of a large and assorted sample of planets around different types of stars in our galaxy.

To continue reading the full press release, follow this link:
The European Space Agency formally adopts Ariel, the exoplanet explorer

Artist’s rendering of the Ariel Spacecraft. Credit: Ariel/Science Office

 Ariel Press Release (04/2019) – Ariel Data Challenge Series launched to build global community for exoplanet data solutions

Ariel, a mission to make the first large-scale survey of exoplanet atmospheres, has launched a global competition series to find innovative solutions for the interpretation and analysis of exoplanet data. The first Ariel Data Challenge invites professional and amateur data scientists around the world to use Machine Learning (ML) to remove noise from exoplanet observations caused by starspots and by instrumentation.

To continue reading the full press release, follow this link:
Ariel Data Challenge Launch 2019

The Ariel Data Challenge Series 2019. Credit: ARIEL Consortium

Ariel Press Release (03/2018) –
Ariel selected as ESA’s next medium-class science mission

Ariel, a mission to answer fundamental questions about how planetary systems form and evolve, has been selected by the European Space Agency (ESA) as its next medium-class science mission, due for launch in 2028. During a 4-year mission, Ariel will observe 1000 planets orbiting distant stars and make the first large-scale survey of the chemistry of exoplanet atmospheres. ESA’s Science Programme Committee announced the selection of Ariel from three candidate missions on 21st March 2018.

To continue reading the full press release, follow this link:
Ariel Selection Press Release UK 2018

 

Ariel Press Release (03/2018) –
Ariel selected as ESA’s next medium-class science mission

Ariel, a mission to answer fundamental questions about how planetary systems form and evolve, has been selected by the European Space Agency (ESA) as its next medium-class science mission, due for launch in 2028. During a 4-year mission, Ariel will observe 1000 planets orbiting distant stars and make the first large-scale survey of the chemistry of exoplanet atmospheres. ESA’s Science Programme Committee announced the selection of Ariel from three candidate missions on 21st March 2018.

To continue reading the full press release, follow this link:
Ariel Selection Press Release UK 2018

Images:
Ariel will be placed in orbit around the Lagrange Point 2 (L2), a gravitational balance point 1.5 million kilometres beyond the Earth’s orbit around the Sun. Image Credit: ESA/STFC RAL Space/UCL/Europlanet-Science Office

ariel_lagrange_points_high_res

Artist’s impression of Ariel on its way to Lagrange Point 2 (L2). Here, the spacecraft is shielded from the Sun and has a clear view of the whole sky. Image Credit: ESA/STFC RAL Space/UCL/Europlanet-Science Office

ariel_space_high_res


Ariel Press Release (01/2015) –
Mission Announcement

An ambitious European mission is being planned to answer fundamental questions about how planetary systems form and evolve. Ariel will investigate the atmospheres of several hundreds planets orbiting distant stars. It is one of three candidate missions selected last month by the European Space Agency (ESA) for its next medium class science mission, due for launch in 2026. The Ariel mission concept has been developed by a consortium of more than 50 institutes from 12 countries, including UK, France, Italy, Germany, the Netherlands, Poland, Spain, Belgium, Austria, Denmark, Ireland, Portugal. The mission will be presented today at the Pathways 2015 conference in Bern, Switzerland, by Ariel’s Principal Investigator, Prof Giovanna Tinetti of UCL.

“The essential nature of exoplanets is still something of a mystery to us: despite finding nearly 2000 exoplanets we haven’t yet found any discernible pattern linking the presence, size or orbital parameters of a planet to what its parent star is like,” said Tinetti. “If we are going to answer questions, such as how is the chemistry of a planet linked to the environment in which it forms, or is its birth and evolution driven by its host star, we need to study a statistically large sample of exoplanets. This is what Ariel is designed to do.” Continue reading “Press Releases”

Facts & Figures

Elliptical primary mirror: 1.1 x 0.7 metres
Mission lifetime: at least 4 years in orbit 
Payload mass / launch mass: ~500 kg / ~ 1500kg
Instrumentation: 3 photometric channels and 3 spectrometers covering continuously from 0.5 to 7.8 microns in wavelength
Launch date: 2029
Destination: Sun – Earth Lagrange Point 2 (L2)
Launch vehicle: Ariane 6-2. Launch shared with Comet Interceptor.

The Ariel mission payload is developed by a consortium of more than 50 institutes from 17 ESA countries – which include the UK, France, Italy, Poland, Belgium, Spain, the Netherlands, Austria, Denmark, Ireland, Norway, Sweden, Czech Republic, Hungary, Portugal, Germany, Estonia – plus a NASA contribution.

Contact

SCIENCE CONTACT

Prof. Giovanna Tinetti
Ariel Principal Investigator
UCL Centre for Space Exochemistry Data – Director
+44 (0)7912509617 l +44 (0)1235 567353
g.tinetti@ucl.ac.uk

PAYLOAD CONSORTIUM CONTACT

Paul Eccleston
Ariel Project Manager – Chief Engineer
RAL Space, Science and Technology Facilities Council (STFC)
+44 (0)1235 446366
paul.eccleston@stfc.ac.uk

ADMINISTRATOR CONTACT

Emma Dunford
Ariel Administrator
UCL Centre for Space Exochemistry Data – Operations Administrator
e.dunford@ucl.ac.uk

COMMS & MEDIA CONTACT

Madeleine Russell
Ariel Consortium Communications Lead and RAL Space Communications Manager
madeleine.russell@stfc.ac.uk

Bex Coates
Ariel Communications & Media
UCL Centre for Space Exochemistry Data
r.l.coates@ucl.ac.uk
 
 

For general enquiries, please use the contact form below: