November 2020
March 2017
Link to all Technical Notes
Link to ESA website

Ariel Special Issue in Experimental Astronomy: coming soon!

Barnes, J.R. et al. Exoplanet mass estimation for a sample of targets for the Ariel mission;

Barstow, J. et al. A retrieval challenge exercise for the Ariel mission;

Boldizsár, G. I. et al., Ancillary science with Ariel: Feasibility and scientific potential of young stellar object observations,

Borsato L. et al., Exploiting the transit timing capabilities of Ariel;

Brucalassi, A. et al. Determination of stellar parameters for Ariel targets: a comparison analysis between different spectroscopic methods; DOI:10.1007/s10686-020-09695-4.

Changeat, Q., et al. Disentangling Atmospheric Compositions of K2-18 b with Next Generation Facilities. arXiv:2003.01486.

Charnay, B. et al. A survey of exoplanet phase curves with Ariel; arXiv:2102.06523.

Chioetto, P . et al. Qualification of the thermal stabilization, polishing and coating procedures for the aluminum telescope mirrors of the Ariel mission;

Danielski, C. et al. The homogeneous characterisation of Ariel host stars;

Demangeon, O. et al. Need, Scale and Feasibility of an Ariel radial velocity campaign;

Encrenaz, T. et al. Observability of temperate exoplanets with Ariel;

Ferus M. et al. Ariel – a window to the origin of life on early Earth?,

Focardi, M. et al. The Ariel Instrument Control Unit its role within the Payload and B1 Phase design;

Garai, Z. et al. Grazing, non-transiting disintegrating exoplanets observed with the planned Ariel space observatory A case study using Kepler-1520b;

Garcia Perez, A. et al. Thermoelastic evaluation of the Payload Module of the Ariel mission;

Guilluy, G. et al. On The Synergy Between Ariel and Ground-Based High-Resolution Spectroscopy; 

Haswell, C. A. Extended Use of the Ariel Core Survey Data;

Helled, R. et al. Ariel Planetary Interiors White Paper

Ito, Y. et al. Detectability of mineral atmospheres with Ariel;

Kiss, C. et al. Ancillary science with Ariel: Feasibility and scientific potential of young star observations; 

Kokori A. et al. ExoClock Project: An open platform for monitoring the ephemerides of Ariel targets with contributions from the public;

Morales, J.C. et al. Ariel scheduling using Artificial Intelligence;

Morello, G. et al. The Ariel 0.6 – 7.8 μm stellar limb- darkening coefficients;

Morgante, G. et al. The thermal architecture of the ESA Ariel payload at the end of Phase B1;

Moses, J.I. et al. Chemical variation with altitude and longitude on exo-Neptunes: Predictions for Ariel phase- curve observations;

Pearson C. et al. The Ariel Ground Segment and Instrument Operations Science Data Centre;

Seli, B. et al. Stellar flares with Ariel;

Szabó, G. et al. High-precision photometry with Ariel; 

Turrini, D. et al. Exploring the link between star and planetary formation with Ariel;

Wolkenberg, P. et al. Effect of clouds on emission spectra for Super Venus within Ariel;

Peer reviewed publications about Ariel

Turrini D. et al. Tracing the formation history of giant planets in protoplanetary disks with Carbon, Oxygen, Nitrogen and Sulphur , ApJ, 909, 40, 2021.

Mugnai, L. V.; Pascale, E.; Edwards, B.; Papageorgiou, A.; Sarkar, S.; ArielRad: the Ariel radiometric model; Experimental Astronomy, 50, 303, 2020.

Sarkar S., E. Pascale, A. Papageorgiou, L. Johnson, I. Waldmann, ExoSim: the Exoplanet Observation Simulator, Experimental Astronomy, 2020, arXiv:2002.03739, DOI:10.1007/s10686-020-09690-9.

Nikolaou N. et al. Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots , AJ, 2021. 

Yip, Hou K. et al., Peeking inside the Black Box: Interpreting Deep Learning Models for Exoplanet Atmospheric Retrievals; ApJ, 2021.

Edwards B. N. et al, Original Research By Young Twinkle Students (ORBYTS): Ephemeris Refinement of Transiting Exoplanets , MNRAS, 2020,

Edwards B. N. et al., Original Research by Young Twinkle Students (Orbyts): Ephemeris Refinement of Transiting Exoplanets II , Research Notes of the AAS, 4, 7, 109, 2020.

Kokori, A., A. Tsiaras, B. Edwards, et al., ExoClock Project: An open platform for monitoring the ephemerides of Ariel targets with contributions from the public, Experimental Astronomy, in press.

Puig. L. et al.; The ESA Ariel mission is ready for implementation, SPIE, 11443, 1144310,

Mösenlechner, G. et al.; Architectural design of the ARIEL FGS software, SPIE, 11452, 114521F, 2021;

Crouzet P. E. et al., Impact of proton radiation on the Ariel AIRS CH1 HAWAII-1RG MWIR detector, SPIE, 11454, 114540A, 2020,

Chioetto P. et al., The primary mirror of the Ariel mission: cryotesting of aluminum mirror samples with protected silver coating, SPIE, 11451, 114511A, 2020.

Naponiello L. et al., The role of the instrument control unit within the ARIEL Payload and its current design, SPIE, 11443, 114434P, 2020.

Cracchiolo, G.; Micela, G.; Peres, G., Correcting the effect of stellar spots on ARIEL transmission spectra, MNRAS, 501, 1733, 2021.

Anisman, L. O. et al. WASP-117 b: An Eccentric Hot Saturn as a Future Complex Chemistry Laboratory, AJ, 160, 233, 2020.

Bourgalais, J., Carrasco, N., et al. Ions in the Thermosphere of Exoplanets: Observable Constraints Revealed by Innovative Laboratory Experiments. AJ, 895, 77, 2020.

Guilluy, G. et al., ARES IV: Probing the Atmospheres of the Two Warm Small Planets HD 106315c and HD 3167c with the HST/WFC3 Camera; AJ, 161, 19, 2021.

Pluriel, W.; et al., ARES. III. Unveiling the Two Faces of KELT-7 b with HST WFC3 ,  AJ, 160, 112, 2020.

Skaf N. et al., ARES II: Characterising the Hot Jupiters WASP-127 b, WASP-79 b and WASP-62 b with HST, AJ, 160, 109, 2020.

Edwards B. N. et al., ARES I: WASP-76 b, A Tale of Two HST Spectra, AJ, 160, 8; 2020.

Changeat Q., Al-Refaie A., Mugnai L.V., Edwards B., Waldmann I. P., Pascale E., Tinetti G. (2020), Alfnoor: A Retrieval Simulation of the Ariel Target List, The Astronomical Journal, 160, 80, 2020.

Changeat Q., Keyte L., Waldmann I. P., Tinetti G. (2020), Impact of planetary mass uncertainties on exoplanet atmospheric retrievals, The Astrophysical Journal, 896, 107, 2020.

Changeat Q., B. Edwards, I. P. Waldmann, and G. Tinetti, Toward a More Complex Description of Chemical Profiles in Exoplanet Retrievals: A Two-layer Parameterization, The Astrophysical Journal, 886 39, 2019.

Edwards, B. N.; L. Mugnai, G. Tinetti, E. Pascale, and S. Sarkar (2019) An Updated Study of Potential Targets for Ariel, AJ, 157 242.

Dransfield, G.; Triaud, A. H. M. J., Colour-magnitude diagrams of transiting exoplanets – III. A public code, nine strange planets, and the role of phosphine, MNRAS, 499, 505, 2020.

Zellem R. et al., Constraining Exoplanet Metallicities and Aerosols with the Contribution to ARIEL Spectroscopy of Exoplanets (CASE), PASP, 131, 094401, 2019.

Middleton K. F. et al., An integrated payload design for the atmospheric remote-sensing infrared exoplanet large-survey (ARIEL): results from phase A and forward look to phase B1, SPIE, 11180, 1118036, 2019.

Tinetti, G., Drossart, P., Eccleston, P. et al., A chemical survey of exoplanets with ARIEL, Exp Astron (2018) 46: 135.

Barstow J. K., Q. Changeat, R. Garland, M. R Line, M. Rocchetto, I. P Waldmann, A comparison of exoplanet spectroscopic retrieval tools, MNRAS, 493, 4884, 2020.

Petralia, A., Micela, G., Principal Component Analysis to correct data systematics. Case study: K2 light curves, Experimental Astronomy, 49, 97, 2020.

D. Turrini, A. Zinzi, J. A. Belinchon; Normalized angular momentum deficit: A tool for comparing the violence of the dynamical histories of planetary systems, A&A, 636, A53, 2020.

Min, M.; Ormel, C. W.; Chubb, K.; Helling, C.; Kawashima, Y; The ARCiS framework for exoplanet atmospheres. Modelling philosophy and retrieval; A&A, 642, A28, 35, 2020.

Sarkar, S. et al., Stellar pulsation and granulation as noise sources in exoplanet transit spectroscopy in the ARIEL space mission, MNRAS, 481, 3, 2871, 2018.

Venot, O., Drummond, B., Miguel, Y. et al., A better characterization of the chemical composition of exoplanets atmospheres with ARIEL, Exp Astron (2018) 46: 101.

Turrini, D., Miguel, Y., Zingales, T. et al., The contribution of the ARIEL space mission to the study of planetary formation, Exp Astron (2018) 46: 45.

Puig, L., Pilbratt, G., Heske, A. et al., The Phase A study of the ESA M4 mission candidate ARIEL, Exp Astron (2018) 46: 211.

Zingales, T., Tinetti, G., Pillitteri, I. et al., The ARIEL mission reference sample, Exp Astron (2018) 46: 67.

Encrenaz, T., Tinetti, G. & Coustenis, A., Transit spectroscopy of temperate Jupiters with ARIEL: a feasibility study, Exp Astron (2018) 46:31.

Focardi, M., Pace, E., Farina, M. et al., The ARIEL Instrument Control Unit design, Exp Astron (2018) 46: 1.

Da Deppo, V., Focardi, M., Middleton, K. et al., An afocal telescope configuration for the ESA ARIEL mission, CEAS Space J (2017) 9: 379.

Tinetti G. et al., The science of ARIELProc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99041X (July 29, 2016); doi:10.1117/12.2232370

Puig L.; Pilbratt G. L.; A. Heske; I. Escudero Sanz; Crouzet P. E., ARIEL: an ESA M4 mission candidateProc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99041W (29 July 2016); doi: 10.1117/12.2230964

Eccleston P. et al., An integrated payload design for the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL)​, Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 990433 (July 29, 2016); doi:10.1117/12.2232878

Focardi M. et al, The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL) payload electronic subsystemsProc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 990436 (July 29, 2016); doi:10.1117/12.2231683

Da Peppo V. et al., Design of an afocal telescope for the ARIEL mission, Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 990434 (July 29, 2016); doi:10.1117/12.2230969